初中七年级数学课件:《有理数的加法》
【 #课件# 导语】课件是教师对课堂教学的一种预计和构想,在教学中占有十分重要的地位。课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,巧设课件,激发兴趣,可以给数学学习动力。 无 为大家准备了以下课件,希望对你们有帮助! 初中七年级数学课件篇一:《有理数的加法》 教学目标 1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则; 2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别; 3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力; 5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。 教学建议 (一)重点、难点分析 本节教学的重点是依据法则熟练进行运算。难点是法则的理解。 (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。 (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。 (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。 (二)知识结构 (三)教法建议 1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。 2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。 3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。 4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。 5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。 6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。 教学设计示例 (第一课时) 教学目的 1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算. 2.通过运算,培养学生的运算能力. 教学重点与难点 重点:熟练应用法则进行加法运算. 难点:法则的理解. 教学过程 (一)复习提问 1.有理数是怎么分类的? 2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么? 3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明? -3与-2; |3|与|-3|; |-3|与0; -2与|+1|; -|+4|与|-3|. (二)引入新课 在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算. (三)进行新课(板书课题) 例1如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方? 两次行走后距原点0为8米,应该用加法. 为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况: 1.同号两数相加 (1)某人向东走5米,再向东走3米,两次一共走了多少米? 这是求两次行走的路程的和. 5+3=8 用数轴表示如图 从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米. 可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和. (2)某人向西走5米,再向西走3米,两次一共向东走了多少米? 显然,两次一共向西走了8米 (-5)+(-3)=-8 用数轴表示如图 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米. 可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和. 总之,同号两数相加,取相同的符号,并把绝对值相加. 例如,(-4)+(-5),……同号两数相加 (-4)+(-5)=-(),…取相同的符号 4+5=9……把绝对值相加 ∴(-4)+(-5)=-9. 口答练习: (1)举例说明算式7+9的实际意义? (2)(-20)+(-13)=? (3) 2.异号两数相加 (1)某人向东走5米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米. 5+(-5)=0 可知,互为相反数的两个数相加,和为零. (2)某人向东走5米,再向西走3米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米. 就是5+(-3)=2. (3)某人向东走3米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米. 就是3+(-5)=-2. 请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定? 最后归纳 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 例如(-8)+5……绝对值不相等的异号两数相加 8>5 (-8)+5=-()……取绝对值较大的加数符号 8-5=3……用较大的绝对值减去较小的绝对值 ∴(-8)+5=-3. 口答练习 用算式表示:温度由-4℃上升7℃,达到什么温度. (-4)+7=3(℃) 3.一个数和零相加 (1)某人向东走5米,再向东走0米,两次一共向东走了多少米? 显然,5+0=5.结果向东走了5米. (2)某人向西走5米,再向东走0米,两次一共向东走了多少米? 容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米. 请同学们把(1)、(2)画出图来 由(1),(2)得出:一个数同0相加,仍得这个数. 总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况. 有理数加法运算的三种情况: 特例:两个互为相反数相加; (3)一个数和零相加. 每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法. (四)例题分析 例1计算(-3)+(-9). 分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征). 解:(-3)+(-9)=-12. 例2 分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”) 解: 解题时,先确定和的符号,后计算和的绝对值. (五)巩固练习 1.计算(口答) (1)4+9; (2)4+(-9); (3)-4+9; (4)(-4)+(-9); (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0; 2.计算 (1)5+(-22); (2)(-1.3)+(-8) (3)(-0.9)+1.5; (4)2.7+(-3.5) 探究活动 题目(1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0; (2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零; (3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0; (4)在解决这个问题的过程中,你能总结出一些什么数学规律? 参考答案我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2. 现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答: (1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0;① (2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.② 又如,在11,10,8,7,5这五个数的前面添加负号,得 12-11-10-9-8-7+6-5+4+3+2+1=-4, 我们就有多种调整的方法,如将-8与+6变号,有 12-11-10+9+8-7-6-5+4+3+2+1=0.③ 经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但 1+2+3+4+5+6+7+8+9+10+11+12=78 因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为 为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5). 同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律. 此外我们还可发现,由于的三个数12,11,10其和33
七年级数学《有理数的减法》教案
教学目标 1.理解掌握法则,会将运算转化为加法运算; 2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过运算,培养学生的运算能力. 3.通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议 (一) 重点、难点分析 本节重点是运用法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施. (二)知识结构 (三)教法建议 1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决. 2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的. 3. 因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆. 4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例 一、素质教育目标 (一)知识教学点 1.理解掌握法则. 2.会进行运算. (二)能力训练点 1.通过把减法运算转化为加法运算,向学生渗透转化思想. 2.通过有理数减法法则的推导,发展学生的逻辑思维能力. 3.通过运算,培养学生的运算能力. (三)德育渗透点 通过揭示法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. (四)美育渗透点 在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美. 二、学法引导 1.教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动. 2.学生学法:探索新知→归纳结论→练习巩固. 三、重点、难点、疑点及解决办法 1.重点:有理数减法法则和运算. 2.难点:有理数减法法则的推导. 四、课时安排 1课时 五、教具学具准备 电脑、投影仪、自制胶片. 六、师生互动活动设计 教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决. 七、教学步骤 (一)创设情境,引入新课 1.计算(口答)(1); (2)-3+(-7); (3)-10+(+3); (4)+10+(-3). 2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少? 教师引导学生观察: 生:10℃比-5℃高15℃. 师:能不能列出算式计算呢? 生:10-(-5). 师:如何计算呢? 教师总结:这就是我们今天要学的内容.(引入新课,板书课题) 【教法说明】 1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础. 2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—. (二)探索新知,讲授新课 1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢? 生:(+10)-(+3)=+7. 师:计算:(+10)+(-3)得多少呢? 生:(+10)+(-3)=+7. 师:让学生观察两式结果,由此得到 (+10)-(+3)=+10)+(-3). (1) 师:通过上述题,同学们观察减法是否可以转化为加法计算呢? 生:可以. 师:是如何转化的呢? 生:减去一个正数(+3),等于加上它的相反数(-3). 【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算. 2.再看一题,计算(-10)-(-3). 教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加加会得到-10,那么这个数是谁呢? 生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7. 教师给另外一个问题:计算(-10)+(+3). 生:(-10)+(+3)=-7. 教师引导、学生观察上述两题结果,由此得到: (-10)-(-3)=(-10)+(+3). (2) 教师进一步引导学生观察(2)式;你能得到什么结论呢? 生:减去一个负数(-3)等于加上它的相反数(+3). 教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算. 【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标. 师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么? 学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充. 师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书) 教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:. 【教法说明】结合引入新课中温度计的实例,进一步验证了法则的合理性,同时向学生指出了有理数减法的.实际意义.从而使学生体会到数学来源于实际,又服务于实际. 4.例题讲解: [出示投影1 (例题1、2)] 例1 计算(1)(-3)-(-5); (2)0-7; 例2 计算(1)7.2-(-4.8); (2)()-. 例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算. 例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评. 【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数. 师:组织学生自己编题,学生回答. 【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授. (三)尝试反馈,巩固练习 师:下面大家一起看一组题. [出示投影2 (计算题1、2)] 1.计算(口答) (1)6-9; (2)(+4)-(-7); (3)(-5)-(-8); (4)(-4)-9 (5)0-(-5); (6)0-5. 2.计算 (1)(-2.5)-5.9; (2)1.9-(-0.6); (3)()-; (4)-(). 学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上. 【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备. 用实物投影显示课本第45页的画面. 3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少? 生答:8848-(-392)=8848+392=9240. 所以两地高度相差9240米. 【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际. (四)课堂小结 提问:通过本节课学习你学到了什么?生答:略. 师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施. 八、随堂练习 1.填空题 (1)3-(-3)=____________; (2)(-11)-2=______________; (3)0-(-6)=____________; (4)(-7)-(+8)=____________; (5)-12-(-5)=____________; (6)3比5大____________; (7)-8比-2小___________; (8)-4-( )=10; (9)如果,,则的符号是___________; (10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________. 2.判断题 (1)两数相减,差一定小于被减数.( ) (2)(-2)-(+3)=2+(-3).( ) (3)零减去一个数等于这个数的相反数.( ) (4)方程在有理数范围内无解.( ) (5)若,,,.( ) 九、布置作业 (一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题. (二)选做题:课本第84页中5、8. 十、板书设计 随堂练习答案. 1.(1)6; (2)-13; (3)6; (4)-15; (5)-7; (6)-2; (7)6; (8)-4; (9)+; (10)8848-(-155). 2.× × √ × √ 作业 答案 (一)必做题:2.(2)102;(4)-68;(6)-210;(8)92 3.(2)-0.6;(4)0.2;(6)-1.5;(8)9.11 4.(2);(4);(6);(8) (二)选做题:5.(1)-9;(2)-5;(3)1;(4)12;(5)-2.28;(6) 8.(1)4;(2)5;(3)7;(4)5