八年级下册数学期中试卷及答案
八年级下册数学期中试卷 本试卷满分120分,考试时间为120分钟。 卷 (选择题,共41分) 注意事项: 1.答卷 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。考试结束,监考人员将试卷和答题卡一并收回。 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。答在试卷上无效。 3. 卷 学生自己保存 一、选择题.(本大题共个16小题,1-7题每小题2分,8-16题每小题3分,共41分,在每小题给出的四个选项中,只有一个选项符合题意) 1、下图中是中心对称图形的是 ( ) 2、已知a A.a+3>b+3 B.2a>2b C.-a<-b D.a-b<0 3、等腰三角形的一边为3,另一边为8,则这个三角形的周长为 ( ) A .11 B.14 C.19 D.14或19 4、如图,用不等式表示数轴上所示的解集,正确的是 ( ) A. 3 C.-1≤ <3 D.-1< ≤3 5、下列四组线段中,可以构成直角三角形的是 ( ) A. 6,7,8 B. 1, ,5 C. 6,8,10 D. , , 6、已知三角形三边长分别为3,1-2a,8,则a的取值范围是 ( ) A.5<a </a 7、在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们 中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的 ( ) A.三边中线的交点 B.三边垂直平分线的交点 C.三条角平分线的交点 D.三边上高的交点 8、如果不等式(1+a)x>1+a的解集为x<1,那么a的取值范围是 ( ) A. a>0 B. a-1 D. a<-1 9、不等式组 的解集是 ,那么 的取值范围是 ( ) A.m≥4 B.m≤4 C. 3≤ <4 D. 3< ≤4 10、已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB, 过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5, 则线段DE的长为 ( ) A. 5 B. 6 C.7 D.8 11、如图,已知一次函数y=kx+b,观察图象回答问题: 当kx+b>0,x的取值范围是 ( ) A. x>2.5 B .x-5 D. x<-5 12、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2米,其侧面如图所示 (单位:米),则小明至少要买( )平方米的地毯。 A.10 B.11 C.12 D.13 13、如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E,AE=2,CE= ( ) A. 1 B. C. 3 D. 14、如图,△ABC绕A逆时针旋转使得C点落在BC 边上的F 处,则对于结论 ①AC=AF; ②∠FAB=∠EAB; ③EF=BC; ④∠EAB=∠FAC, 其中正确结论的个数是 ( ) A.4个 B.3个 C.2个 D. 1个 15、如图:在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3), M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的 个数为 ( ) A.4 B.5 C.6 D.8 16、已知AB=AC,AD为∠BAC的角平分线,D 、E、F…为∠BAC的角平分线上的若干点。如图1,连接BD、CD,图中有1对全等三角形;如图2,连接BD、CD、BE、CE,图中有3对全等三角形;如图3,连接BD、CD、CE、BF、CF,图中有6对全等三角形;依此规律,第8个图形中有全等三角形 ( ) A.24对 B.28对 C.36对 D.72对 卷 (非选择题,共79分) 注意事项:1.答卷 前,将密封线左侧的项目填写清楚。 2. 答卷 时,将答案用黑色、蓝色水笔或圆珠笔直接写在试卷上。 3. 卷 交给监场老师并由老师按页码沿密封线装订。 题号 二 三 21 22 23 24 25 26 得分 二、填空题.(本大题共 4个小题,每小题4分,共16分,把答案写在题中的横线上) 17、全等三角形的对应角相等的逆命题是 命题。(填“真”或“假”) 18、已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1 19、一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM,DN分别交于点E,F,把△DEF绕点D旋转到一定位置,使得DE=DF,则∠BDN的度数是 。 20、定义新运算:对于任意实数 a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为 。 三、解答题.(本大题共6个小题,共63分。解答题写出文字说明、证明过程或演算过程) 21、(每小题6分,共12分)解不等式或不等式组。 (1) .并将解集在数轴上表示出来; 解: (2) 解: 22、(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度). (1)请画出将△ABC向下平移5个单位后得到的△A1B1C1; (2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长. 解: 23、(本题9分)如图, 在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长。 解: 24、(本题10分)求不等式(2x﹣1)(x+3)>0的解集. 解:根据“同号两数相乘,积为正”可得:① 或 ② . 解①得x> ;解②得x<﹣3. ∴不等式的解集为x> 或x<﹣3. 请你仿照上述方法解决下列问题: (1)求不等式(2x﹣3)(x+1)<0的解集. (2)求不等式 ≥0的解集. 解: 25、(本题11分)某花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆,若一次购买绣球花超过20盆时,超过20盆的部分绣球花打8折. (1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数关系式; (2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花的数量不超过绣球花数量的一半,两种花卉各买多少盆时,总费用最少,最少总费用多少元? 解: 26、(本题13分)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD. (1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE; (2)如图2,当点D在线段BC延长线上时,将线段AD绕 点A逆时针方向旋转90°得到线段AE,连接CE.请画出图形。上述结论是否仍然成立,并说 明理由; (3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系。 证明: 八年级下册数学期中试卷参考答案 一、 选择题: 1-5CDBDC,6-10DBDBA,11-16ABACCC 二、填空题: 17、两个锐角互余的三角形是直角三角形;18、x-1. 三、解答题: 21、(1)4x-6x≥-3-5 ………1分 -2x ≥-8 ………1分 x≤4 ………2分 (2)由不等式①得:x≥1 ………2分 由不等式②得:x<4 ………2分 ∴不等式组的解集为1≤x<4 ………2分 22、(1)如图, ………2分 A1(1,-1)C1(3,0) ………2分 (2)如图, ………3分 ………2分 23、解:∵AD⊥BC ∴∠ADB=∠ADC=90° ………2分 在RT△BDF和RT△ADC中, ∴RT△BDF RT△ADC(HL) ………4分 ∴AD=BD=3 ………1分 在RT△ABD中,AB2= AD2+BD2 AB2= 32+32 AB= ………3分 24、解:根据“异号两数相乘,积为负”可得:① 或② ………3分 解①得 无解;解②得 -1 (2)解:根据“同号两数相乘,积为正”可得:① 或② ………3分 解①得x> 3;解②得x3 或x<-2。 ………2分 25、解: (1)y太阳花=6x; ………1分 ①y绣球花=10x(x≤20); ………2分 ②y绣球花=10×20+10×0.8×(x-20) =200+8x-160 =8x+40(x>20) ………3分 (2)根据题意, 设太阳花的数量是m盆,则绣球花的数量是(90-m)盆,购买两种花的总费用是w元, ∴m≤ (90-m) 则m≤30, ………1分 则w=6m+[8(90-m)+40] =760-2m ………3分 ∵-2<0 ∴w随着m的增大而减小, ∴当m=30时, w最小=760-2×30=700(元), 即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.………2分 26、(1)证明:如图1,∵∠BAC=90°,AB=AC, ∴∠ABC=∠ACB=45°, ∵∠DAE=90 °, ∴∠DAE=∠CAE+∠DAC=90°, ∵∠BAC=∠BAD+∠DAC=90°, ∴∠BAD=∠CAE, 在△BAD和△CAE中, , ∴△BAD≌△CAE(SAS), ∴BD=CE,∠ACE=∠ABC=45°. ∴∠BCE=∠ACB+∠ACE=90°, ∴BD⊥CE; ………5分 (2) 如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE. 与(1)同理可证CE=BD,CE⊥BD; ………5分 (3)2AD2=BD2+CD2, ∵∠EAD=90°AE=AD, ∴ED= AD, 在RT△ECD中,ED2=CE2+CD2,
八年级数学上册期末试卷及答案
关键的八年级数学期末考试就临近了,只要努力过、奋斗过,就不会后悔。下面是我为大家精心整理的八年级数学上册期末试卷,仅供参考。 八年级数学上册期末试题 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 3. 的平方根是( ) A.2 B.±2 C. D.± 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 7.若 有意义,则 的值是( ) A. B.2 C. D.7 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 . 14.腰长为5,一条高为3的等腰三角形的底边长为 . 15.若x2﹣4x+4+ =0,则xy的值等于 . 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 度. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= ,b= . (2)利用所探索的结论,用完全平方式表示出: = . (3)请化简: . 八年级数学上册期末试卷参考答案 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分. 1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A. B. C. D. 【考点】轴对称图形. 【分析】根据轴对称图形的概念求解. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误; D、是轴对称图形,故本选项正确. 故选D. 【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 2.下列运算正确的是( ) A.a+a=a2 B.a3•a2=a5 C.2 =2 D.a6÷a3=a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;二次根式的加减法. 【分析】根据合并同类项、同底数幂的乘法、除法,即可解答. 【解答】解:A、a+a=2a,故错误; B、a3•a2=a5,正确; C、 ,故错误; D、a6÷a3=a3,故错误; 故选:B. 【点评】本题考查了合并同类项、同底数幂的乘法、除法,解决本题的关键是熟记合并同类项、同底数幂的乘法、除法. 3. 的平方根是( ) A.2 B.±2 C. D.± 【考点】算术平方根;平方根. 【专题】常规题型. 【分析】先化简 ,然后再根据平方根的定义求解即可. 【解答】解:∵ =2, ∴ 的平方根是± . 故选D. 【点评】本题考查了平方根的定义以及算术平方根,先把 正确化简是解题的关键,本题比较容易出错. 4.用科学记数法表示﹣0.00059为( ) A.﹣59×10﹣5 B.﹣0.59×10﹣4 C.﹣5.9×10﹣4 D.﹣590×10﹣7 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:﹣0.00059=﹣5.9×10﹣4, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 5.使分式 有意义的x的取值范围是( ) A.x≤3 B.x≥3 C.x≠3 D.x=3 【考点】分式有意义的条件. 【分析】分式有意义的条件是分母不等于零,从而得到x﹣3≠0. 【解答】解:∵分式 有意义, ∴x﹣3≠0. 解得:x≠3. 故选:C. 【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键. 6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC 【考点】平行四边形的判定. 【分析】根据平行四边形判定定理进行判断. 【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意; B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意; C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意; D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意; 故选D. 【点评】本题考查了平行四边形的判定. (1)两组对边分别平行的四边形是平行四边形. (2)两组对边分别相等的四边形是平行四边形. (3)一组对边平行且相等的四边形是平行四边形. (4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形. 7.若 有意义,则 的值是( ) A. B.2 C. D.7 【考点】二次根式有意义的条件. 【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可. 【解答】解:由题意得,x≥0,﹣x≥0, ∴x=0, 则 =2, 故选:B. 【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键. 8.已知a﹣b=1且ab=2,则式子a+b的值是( ) A.3 B.± C.±3 D.±4 【考点】完全平方公式. 【专题】计算题;整式. 【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可. 【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1, 将ab=2代入得:a2+b2=5, ∴(a+b)2=a2+b2+2ab=5+4=9, 则a+b=±3, 故选C 【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键. 9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( ) A.a B.2a C.3a D.4a 【考点】平行四边形的性质. 【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD. 【解答】解:∵▱ABCD的周长为4a, ∴AD+CD=2a,OA=OC, ∵OE⊥AC, ∴AE=CE, ∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a. 故选:B. 【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键. 10.已知xy<0,化简二次根式y 的正确结果为( ) A. B. C. D. 【考点】二次根式的性质与化简. 【分析】先求出x、y的范围,再根据二次根式的性质化简即可. 【解答】解:∵要使 有意义,必须 ≥0, 解得:x≥0, ∵xy<0, ∴y<0, ∴y =y• =﹣ , 故选A. 【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键. 11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( ) A. B. C.2 D. 【考点】翻折变换(折叠问题). 【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长. 【解答】解:∵DE垂直平分AB, ∴AE=BE, 设AE=x,则BE=x,EC=4﹣x. 在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9, 解得:x= , 则EC=AC﹣AE=4﹣ = . 故选B. 【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键. 12.若关于x的分式方程 无解,则常数m的值为( ) A.1 B.2 C.﹣1 D.﹣2 【考点】分式方程的解;解一元一次方程. 【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用. 【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值. 【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m, ∵当x=3时,原分式方程无解, ∴1=﹣m,即m=﹣1; 故选C. 【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键. 二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分. 13.将xy﹣x+y﹣1因式分解,其结果是 (y﹣1)(x+1) . 【考点】因式分解-分组分解法. 【分析】首先重新分组,进而利用提取公因式法分解因式得出答案. 【解答】解:xy﹣x+y﹣1 =x(y﹣1)+y﹣1 =(y﹣1)(x+1). 故答案为:(y﹣1)(x+1). 【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键. 14.腰长为5,一条高为3的等腰三角形的底边长为 8或 或3 . 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案. 【解答】解:①如图1. 当AB=AC=5,AD=3, 则BD=CD=4, 所以底边长为8; ②如图2. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=1, 则BC= = , 即此时底边长为 ; ③如图3. 当AB=AC=5,CD=3时, 则AD=4, 所以BD=9, 则BC= =3 , 即此时底边长为3 . 故答案为:8或 或3 . 【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论. 15.若x2﹣4x+4+ =0,则xy的值等于 6 . 【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用. 【专题】计算题;一次方程(组)及应用. 【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值. 【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0, ∴ , 解得: , 则xy=6. 故答案为:6 【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键. 16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C= 180 度. 【考点】勾股定理的逆定理;勾股定理. 【分析】勾股定理的逆定理是判定直角三角形的方法之一. 【解答】解:连接AC,根据勾股定理得AC= =25, ∵AD2+DC2=AC2即72+242=252, ∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°, 故∠A+∠C=∠D+∠B=180°,故填180. 【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目. 三、解答题:本大题共6小题,共64分。解答时要写出必要的文字说明、证明过程或演算步骤。 17.如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2. 【考点】作图-轴对称变换. 【分析】分别利用关于x轴、y轴对称点的坐标性质得出各对应点的位置,进而得出答案. 【解答】解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标: A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1), 如图所示:△A2B2C2,即为所求. 【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键. 18.先化简,再求值: (1)5x2﹣(y+x)(x﹣y)﹣(2x﹣y)2,其中x=1,y=2. (2)( )÷ ,其中a= . 【考点】分式的化简求值;整式的混合运算—化简求值. 【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可; (2)先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可. 【解答】解:(1)原式=5x2﹣x2+y2﹣4x2+4xy﹣y2 =4xy, 当x=1,y=2时,原式=4×1×2=8; (2)原式= • = • =a﹣1, 当a= 时,原式= ﹣1. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 19.列方程,解应用题. 某中学在莒县服装厂订做一批棉学生服,甲车间单独生产3天完成总量的 ,这时天气预报近期要来寒流,需要加快制作速度,这时增加了乙车间,两个车间又共同生产两天,完成了全部订单,如果乙车间单独制作这批棉学生服需要几天? 【考点】分式方程的应用. 【分析】设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 ,根据总的工作量为1列出方程并解答. 【解答】解:设乙车间单独制作这批棉学生服需要x天,则每天能制作总量的 ;甲车间单独生产3天完成总量的 ,则每天能制作总量的 , 根据题意,得: +2×( + )=1, 解得x=4.5. 经检验,x=4.5是原方程的根. 答:乙车间单独制作这批棉学生服需要4.5天. 【点评】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数. 20.△ABC三边的长分别为a、b、c,且满足a2﹣4a+b2﹣4 c=4b﹣16﹣c2,试判定△ABC的形状,并证明你的结论. 【考点】因式分解的应用. 【分析】根据完全平方公式,可得非负数的和为零,可得每个非负数为零,可得a、b、c的值,根据勾股定理逆定理,可得答案. 【解答】解:△ABC是等腰直角三角形. 理由:∵a2﹣4a+b2﹣4 c=4b﹣16﹣c2, ∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣4 c+8)=0, 即:(a﹣2)2+(b﹣2)2+(c﹣2 )2=0. ∵(a﹣2)2≥0,(b﹣2)2≥0,(c﹣2 )2≥0, ∴a﹣2=0,b﹣2=0,c﹣2 =0, ∴a=b=2,c=2 , ∵22+22=(2 )2, ∴a2+b2=c2, 所以△ABC是以c为斜边的等腰直角三角形. 【点评】本题考查了因式分解的应用,勾股定理逆定理,利用了非负数的和为零得出a、b、c的值是解题关键. 21.如图,四边形ABCD是平行四边形,并且∠BCD=120°,CB=CE,CD=CF. (1)求证:AE=AF; (2)求∠EAF的度数. 【考点】全等三角形的判定与性质;平行四边形的性质. 【分析】(1)寻找分别含有AE和AF的三角形,通过证明两三角形全等得出AE=AF. (2)在∠BAD中能找出∠EAF=∠BAD﹣(∠BAE+∠FAD),在(1)中我们证出了三角形全等,将∠FAD换成等角∠AEB即可解决. 【解答】(1)证明:∵四边形ABCD是平行四边形,并且∠BCD=120°, ∴∠BCE=∠DCF=60°,CB=DA,CD=BA,∠ABC=∠ADC, ∵CB=CE,CD=CF, ∴△BEC和△DCF都是等边三角形, ∴CB=CE=BE=DA,CD=CF=DF=BA, ∴∠ABC+∠CBE=∠ADC+∠CDF, 即:∠ABE=∠FDA 在△ABE和△FDA中,AB=DF,∠ABE=∠FDA,BE=DA, ∴△ABE≌△FDA (SAS), ∴AE=AF. (2)解:∵在△ABE中,∠ABE=∠ABC+∠CBE=60°+60°=120°, ∴∠BAE+∠AEB=60°, ∵∠AEB=∠FAD, ∴∠BAE+∠FAD=60°, ∵∠BAD=∠BCD=120°, ∴∠EAF=∠BAD﹣(∠BAE+∠FAD)=120°﹣60°=60°. 答:∠EAF的度数为60°. 【点评】本题考查全等三角形的判定与性质,解题的关键是寻找合适的全等三角形,通过寻找等量关系证得全等,从而得出结论. 22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+ )2,善于思考的小明进行了以下探索: 设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m . a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b 的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b =(m+n )2,用含m、n的式子分别表示a,b,得a= m2+3n2 ,b= 2mn . (2)利用所探索的结论,用完全平方式表示出: = (2+ )2 . (3)请化简: . 【考点】二次根式的性质与化简. 【专题】阅读型. 【分析】(1)利用已知直接去括号进而得出a,b的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 【解答】解:(1)∵a+b =(m+n )2, ∴a+b =(m+n )2=m2+3n2+2 mn, ∴a=m2+3n2,b=2mn; 故答案为:m2+3n2;2mn; (2) =(2+ )2; 故答案为:(2+ )2; (3)∵12+6 =(3+ )2, ∴ = =3+ .