碳纤维是什么材料?碳纤维制作工艺要点?
对于碳纤维很多人都是比较陌生的,因为根本不知道这是什么东西,但是对于正在使用碳纤维的人来说,想要更进一步的了解它的真实情况,而且还的陌生陌生就必须首先来了解一下有关于碳纤维是什么材料?碳纤维制作工艺要点? 对于 碳纤维 很多人都是比较陌生的,因为根本不知道这是什么东西,但是对于正在使用碳纤维的人来说,想要更进一步的了解它的真实情况,而且还的陌生陌生就必须首先来了解一下有关于碳纤维是什么材料?碳纤维制作工艺要点? 一,碳纤维材料介绍 碳纤维主要是由碳元素组成的一种特种纤维,不同种类的碳纤维其含碳量也不一样,一般在90%以上。一般碳素材料的特性是碳纤维具有的,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但不同于一般碳素材料的是,其有显著的各向异性的外形,柔软、可加工成各种织物,沿纤维轴方向表现出很高的 强度 。碳纤维比重小,因此有很高的比强度。 二,碳纤维材料的特点 1、物理结构与化学特性是前面为直径6微米的碳纤维与后面人类 头发 的比较每一根碳纤维由数千条更微小的碳纤维所组成,直径大约5至8微米; 2、在原子层面的碳纤维跟石墨很相近,是由一层层以六角型排列的碳原子所构成; 3、一般碳纤维的密度为1750 kg/m3。 4、导热能力高但传电能力低,碳纤维的比热容量亦比铜低; 5、当加热的时候,碳纤维会变厚而短; 6、虽然碳纤维的天然颜色是黑色,但可以把它染上不同的颜色。 三,碳纤维材料的用途 碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、 陶瓷 、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。 碳纤维制作工艺要点? 1、杂质缺陷少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。 2、研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300到1800℃,石墨化一般在2500到3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。 3、实现原丝高纯化、高强化、致密化以及表面光洁无暇是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始。原丝质量既决定了碳纤维的性质,又制约其生产成本。PAN原丝是制造高性能碳纤维的首要必备条件。 4、在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。 以上介绍了有关于碳纤维是什么材料?碳纤维制作工艺要点?面对这样的问题,我们一般要注意的是在选择上有一定的技巧和方法。再者我们在购买时,一定要看清一些产品的防伪标志,不要被一些无良的售卖者所欺骗,引起没有必要的麻烦设计。
碳纤维复合材料成型工艺
碳纤维复合材料虽然性能优异,但因为成本和批量化生产效率的问题,迟迟没有大规模应用。如何高速、高效大批量生产高质量、低成本的碳纤维复合材料,并提高材料利用率,是业界人士的共同目标。
碳纤维复合材料在发挥其轻质高强的基础上,会根据应用对象的差异采用不同的成型工艺,从而尽可能地发挥出碳纤维所具有的特殊性能。 成型工艺改进、优化的目的主要是提高效率和制品质量,从而降低整体的加工成本。
(1)手糊成型工艺--湿法铺层成型法;
(2)喷射成型工艺;
(3)树脂传递模塑成型技术(RTM技术);
(4)袋压法(压力袋法)成型;
(5)真空袋压成型;
(6)热压罐成型技术;
(7)液压釜法成型技术;
(8)热膨胀模塑法成型技术;
(9)夹层结构成型技术;
(10)模压料生产工艺;
(11)ZMC模压料注射技术;
(12)模压成型工艺;
(13)层合板生产技术;
(14)卷制管成型技术;
(15)纤维缠绕制品成型技术;
(16)连续制板生产工艺;
(17)浇铸成型技术;
(18)拉挤成型工艺;
(19)连续缠绕制管工艺;
(20)编织复合材料制造技术;
(21)热塑性片状模塑料制造技术及冷模冲压成型工艺;
(22)注射成型工艺;
(23)挤出成型工艺;
(24)离心浇铸制管成型工艺;
(25)其它成型技术。
随着碳纤维复合材料应用的深入和发展,碳纤维复合材料的成型方式也在不断地以新的形式出现,但是碳纤维复合材料的诸种成型工艺并非按照更新淘汰的方式存在的,在实际应用中,往往是多种工艺并存,实现不同条件、不同情况下的最好效应。相信在未来几年碳纤维复合材料成型速度会不断提高,或许一分钟内成型将不会是空谈。
在模具工作面上涂敷脱模剂、胶衣,将剪裁好的碳纤维预浸布铺设到模具工作面上,刷涂或喷涂树脂体系胶液,达到需要的厚度后,成型固化、脱模。在制备技术高度发达的今天,手糊工艺仍以工艺简便、投资低廉、适用面广等优势在石油化工容器、贮槽、汽车壳体等许多领域广泛应用。其缺点是质地疏松、密度低,制品强度不高,而且主要依赖于人工,质量不稳定,生产效率很低。
属于手糊工艺低压成型中的一类,使用短切纤维和树脂经过喷枪混合后,压缩空气喷洒在模具上,达到预定厚度后,再手工用橡胶锟按压,然后固化成型。为改进手糊成型而创造的一种半机械化成型工艺,在工作效率方面有一定程度的提高,但依然满足不了大批量生产,用以制造汽车车身、船身、浴缸、储罐的过渡层。
将逐层铺叠的预浸料放置于上下平板模之间加压加温固化,这种工艺可以直接继承木胶合板的生产方法和设备,并根据树脂的流变性能,进行改进与完善。层压成型工艺主要用来生产各种规格、不同用途的复合材料板材。具有机械化和自动化程度高、产品质量稳定等特点,但是设备一次性投资大。
将经过树脂胶液浸渍的连续纤维或布带按一定规律缠绕到芯模上,然后固化、脱模成为复合材料制品的工艺。碳纤维缠绕成型可充分发挥其高比强度、高比模量以及低密度的特点,制品结构单一,可用于制造圆柱体、球体及某些正曲率回转体或筒形碳纤维制品。
将浸渍树脂胶液的连续碳纤维丝束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的型材。拉挤成型是复合材料成型工艺中的一种特殊工艺,其优点是生产过程可完全实现自动化控制,生产效率高。拉挤成型制品中纤维质量分数可高达80%,浸胶在张力下进行,能充分发挥增强材料的作用,产品强度高,其制成品纵、横向强度可任意调整,可以满足制品的不同力学性能要求。该工艺适合于生产各种截面形状的型材,如工字型、角型、槽型、异型截面管材以及上述截面构成的组合截面型材,碳纤维复合芯导线主要采用这种成型工艺。
将液态单体合成为高分子聚合物,再从聚合物固化反应为复合材料的过程改为直接在模具中同时一次完成,既减少了工艺过程中的能量消耗,又缩短了模塑周期(只需约2分钟便可完成一件制品)。但这种工艺的应用,必须以精确的管道输送和计量以及温度压力自动控制为基础,属于高分子材料和近代高新科学技术的交叉范畴,目前的应用还不是很广。液态成型主要包括:RTM成型工艺、RFI成型、VARI成型。
树脂膜渗透(RFI)成型工艺示意图如下。主要优点是模具比RTM工艺模具简单,树脂沿厚度方向流动,更容易浸润纤维,没有预浸料,成本较低。但所得制品尺寸精度和表面质量不如RTM工艺,空隙含量较高,效率也稍微低一些,适合生产大平面或简单曲面的零件。
真空辅助成型工艺(VARI)的示意图如下,这种方法的优点是原材料利用率高,制件修整加工量少,不需要预浸料,成本较低,适用于常温或温度不高的大型壁板结构件生产。但缺点和RFI成型工艺相似。
将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。热压罐是一种能承受和调控一定温度、压力范围的专用压力容器。坯料被铺放在附有脱模剂的模具表面,然后依次用多孔防粘布(膜)、吸胶毡、透气毡覆盖,并密封于真空袋内,再放入热压罐中。加温固化前先将袋抽真空,除去空气和挥发物,然后按不同树脂的固化制度升温、加压、固化。固化制度的制定与执行是保证热压罐成型制件质量的关键。该种成型工艺适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。
这种方法使用较多,主要优点是:
(1)制品尺寸稳定,重复性好;
(2)纤维体积含量高(60%-65%);
(3)力学性能可靠;
(4)几乎可成型所有的材料;
(5)可固化不同厚度的层合版;
(6)可制造复杂曲面的零件。
但也存在以下不足:
(1)制件大小受热压罐尺寸限制;
(2)周期长、生产效率低;
(3)耗能高,运行成本高。
简称VIP, 在模具上铺“干”碳纤维复合材料,然后铺真空袋,并抽出体系中的真空,在模具腔中形成一个负压,利用真空产生的压力把不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料,最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。该工艺在1950年就出现了专利记录,但在近几年才得到发展。在真空环境下树脂浸润碳纤,制品中产生的气泡极少,制品的强度更高、质量更轻,产品质量比较稳定,而且降低了树脂的损耗,仅用一面模具就可以得到两面光滑平整的制品,能较好地控制产品厚度。一般应用于船艇工业中的方向舵、雷达屏蔽罩,风电能源中的叶片、机舱罩,汽车工业中的各类车顶、挡风板、车厢等。
将碳纤维预浸料置于上下模之间,合模将模具置于液压成型台上,经过一定时间的高温高压使树脂固化后,取下碳纤维制品。这种成型技术具有高效、制件质量好、尺寸精度高、受环境影响小等优点,适用于批量化、强度高的复合材料制件的成型。但前期模具制造复杂,投入高,制件大小受压机尺寸的限制。
预浸料基材的成型工艺
另外片状模塑料(Sheet Molding Compound,SMC)模压成型工艺、长碳纤维增强热塑性材料(Long Carbon Fiber Reinforced Thermolplastics,CF-LFT)注塑成型工艺也得到了广泛应用。
SMC由树脂糊浸渍纤维或短切纤维毡,两面覆盖聚乙烯薄膜而制成的片状模压料,属于预浸毡料范围。SMC成型效 率高、产品的表面光洁度好、外形尺寸稳定性好,且成型周期短、成本低,适合大批量生产,适合生产截面变化不太大的薄壁制品,在GFRP汽车部件生产领域已得到广泛应用。目前,在车用CFRP成型工艺方面,SMC主要用于片状短切纤维复合材料的生产,由于纤维的非连续性,制品强度不高,且强度具有面内各向同性特点。而碳纤维在树脂糊中的润湿性是SMC工艺面临的重要课题,通过对碳纤维进行必要的表面处理,并采用适当的润湿分散剂能够有效提高碳纤维在树脂糊中的润湿性和均匀性。碳纤维SMC也在汽车工业领域获得了不少应用。
SMC的参考工艺流程
模压工艺在欧美虽然已经有相当长的应用历史,但是在国内依然是应用性很强的一种碳纤维成型工艺,在工业的承力结构件制造方面有不可取代的地位,由于树脂含量可控,纤维浸润性好,成品碳纤维含量较高,因此强度表现优异,精准的制件尺寸,较短的成型周期,良好的生产环境,能满足年产量5-8万件的规模性生产。我国高铁某车型应用的一款碳纤维结构件在无锡威盛新材量产,采用预埋加模压的工艺,成型后不仅解决了金属与碳纤维连接难的问题,而且确保了制件的机械强度,据高铁制造商方面反馈,这种质轻、强度大、耐老化、使用寿命长的碳纤维结构件不仅达到了他们的预期效果,而且他们从应用结果推断,使用模压成型工艺的碳纤维还可以适用于更多的产品,例如高铁车辆内部的装饰件、扶手、车身附件等。
一种将感应器集成在模具中的新型感应加热工艺,可以在20℃-400℃的温度下加工碳纤维,通过热传导利用集成在模具内部的感应器来加热模具表面。这是由新兴企业RocTool公司在Cage系统上推出的补充技术,采用电磁感应可以迅速加热模具,并能很好地控制局部温度。其优势是显著减少了周期时间和部件成本。但是目前该种技术尚不适合大型部件,而且相关的产量必须足够大。
树脂转移模塑成形(RTM:Resin Transfer Molding)技术是一种低成本复合材料的制造方法,最初主要用于飞机次承力结构件,如舱门和检查口盖。1996年,美国防务预研局开展了高强度主承力构件的低成本RTM 制造技术研究。RTM技术具有高效、低成本、制件质量好、尺寸精度高、受环境影响小等优点,可应用于体积大、结构复杂、强度高的复合材料制件的成型,已经成为近几年航空航天材料加工领域研究最为活跃的方向之一。
原理简介
RTM工艺的主要原理是在模腔(模腔需要预先制作成特定尺寸)中铺放按性能和结构要求设计的增强材料预成形体,在一定压力范围内,采用注射设备将专用树脂体系注入闭合模腔,通过树脂与增强体的浸润固化成型。模具具有周边密封和紧固以及注射及排气系统,以保证树脂流动顺畅并排出模腔中的全部气体和彻底浸润纤维;同时具有加热系统,可加热固化成形复合材料构件。它是一种不采用预浸料,也不采用热压罐的成形方法。
目前主要的派生技术是真空导入模塑工艺(VIMP:Vacuum Infusion Molding Process)、柔性辅助RTM和共注射RTM。这些技术在保留了传统的RTM工艺可浸渍成型带有夹芯、加筋、预埋件的大型构件等优势的基础上,具有生产构件范围广、产品质量稳定、易与其他编织工艺相结合和低成本的制造优势。此外高压Resin transfer molding (HP-RTM)采用预成型件、钢模、真空辅助排气,高压注射和高压下完成高性能热固性复合材料的浸渍和固化工艺,实现低成本、短周期(大批量)、高质量生产。
HP-RTM主要优点:
① 树脂快速充满模腔。②改善了树脂浸渍增强材料的质量。③加速树脂反应性系统可以获得短的固化周期。④对空气的排除和产品的孔隙减少具有重大意义。⑤产品具有卓越的表面性能和质量。⑥产品的厚度和三维形状尺寸偏差低。⑦具有高的工艺稳定性和重复性。 ⑧使用内脱模剂和自清洁系统。
HP-RTM需要满足以下要求:
① 很好的材料和很高的另件性能。②另件的表面质量要求非常高。③短的加工周期。④有条件有能力使用快速固化树脂。⑤具备大规模化的工业生产能力。
虽然RTM成型工艺的优点很多,但也存在以下 不足: ①闭合磨具密封要求高,前期费用高;②树脂和纤维直接有空隙,注入树脂前需要加热,预成型体在放入模具时位置要恰到好处。
这是一种新型技术,伯乐CIML设备将传统的“多步法”工艺集成为“一步法”,大大缩短了工艺流程,并且更好地保留了纤维长度,达到节能高效生产的目的。通过攻克材料-装备-制造中的配方优化、混配系统、智能控制系统和成型工艺参数优化等一系列关键技术问题,完全满足汽车轻量化对制品强度、成本、效率等方面的需求,堪称为汽车轻量化量身打造的装备利器。
参考资料:
[1] https://www.sohu.com/a/165244973_777213
[2] http://www.sohu.com/a/74530286_232483
[3] https://wenku.baidu.com/view/359ca266b207e87101f69e3143323968011cf4b1.html
碳纤维如何加工
碳纤维是一种轻质、高强度和耐腐蚀的材料,常用于航空航天、汽车、运动器材等领域。它的加工需要特殊的工艺和方法,以下是常见的碳纤维加工方法:切割: 碳纤维可以使用刀具、激光或水刀进行切割。切割时需要注意控制刀具的角度和速度,以避免产生毛刺和损坏纤维。钻孔: 使用硬质合金钻头进行钻孔,需要适当的冷却剂来降低摩擦热。在钻孔过程中,要注意控制钻头的速度和压力,以避免损坏纤维。磨削: 采用特殊的磨削工具,如金刚石砂轮,进行精细加工和表面整理。铣削: 使用高硬度刀具,如多刃刀具和涂层刀具,进行铣削加工。铣削时要注意冷却和去除切屑,以防止碳纤维表面的损伤。成型: 使用真空吸塑或压缩成型等方法,将碳纤维制作成所需形状,如零件、板材等。贴合: 可将碳纤维复合材料贴合在其他材料上,如玻璃纤维、塑料等,以增强其性能。喷涂: 使用特殊的涂料或涂覆剂,增加碳纤维表面的保护和美观。在进行碳纤维加工时,需要选择合适的工艺和方法,根据具体的应用要求和加工目标进行操作。此外,碳纤维的加工需要专业的技术和经验,以确保加工质量和产品性能。激光切割在碳纤维加工中具有广泛应用前景,因其高精度、无接触和适用于复杂形状的特点。以下是激光切割碳纤维的优势和趋势:高精度: 激光切割可以实现高精度的切割,能够在碳纤维上创造精细的轮廓和复杂的图案,适用于需要精确尺寸和形状的应用。无接触: 激光切割是一种非接触式加工方法,不需要直接接触碳纤维表面,避免了表面损伤和刀具磨损的问题。适用于复杂形状: 激光切割可以轻松切割出各种复杂形状,包括曲线、角度和小孔等,满足不同应用的需求。最小热影响区: 激光切割的热影响区非常小,可以最大程度地减少材料的变形和损伤。自动化和数字化: 激光切割可以与自动化和数字化技术相结合,实现高效的生产流程和生产线集成。节省成本: 激光切割可以减少物料浪费和后期加工的需求,从而降低了生产成本。环保: 激光切割过程不需要化学溶剂或冷却液,减少了环境污染。持续创新: 激光切割技术不断创新和发展,新的激光源、光学系统和控制技术的引入将进一步提升碳纤维激光切割的效率和质量。随着激光技术的不断进步和碳纤维在各个领域的广泛应用,激光切割碳纤维将会变得更加普遍和重要。因此,梅曼激光在现在阶段推出了一款专门用于切割碳纤维的激光器,根据其特性和热影响区对切割质量的影响,以确保最佳切割结果。
碳纤维制备工艺
碳纤维(Carbon Fibre,简称CF)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上(其中含碳量高于99%的称石墨纤维)。碳纤维是有机纤维纤维经预氧化、碳化成的纤维状聚合物碳,既不属于无机纤维,也不属于有机纤维。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。碳纤维与传统的玻璃纤维相比,杨氏模量是其3倍多;它与凯夫拉纤维相比,杨氏模量是其2倍左右,在有机溶剂、酸、碱中不溶不胀,耐蚀性突出。因此碳纤维及其复合材料近年来发展十分迅速。
可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。
经过多年的发展目前只有 粘胶(纤维素)基碳纤维 、 沥青纤维 和 聚丙烯腈(PAN)纤维 三种原料制备碳纤维工艺实现了工业化。
用粘胶基碳纤维增强的耐烧蚀材料可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。
虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而 实际碳收率仅为30% 以下 。所以粘胶(纤维素)基碳纤维的制备成本比较高, 目前其产量已不足世界纤维总量的1% 。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以 在军事工业方面还保留少量的生产 。
1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此, 沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线 。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。
目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。
PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前 应用领域最广,产量也最大的一种碳纤维 。
聚丙烯腈基 碳纤维的生产主要包括原丝生产和原丝碳化两个过程。
原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。
碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。
PAN基碳纤维生产的流程图如图1所示。
在一定的聚合条件下,丙稀腈(AN)在引发剂的自由基作用下,双键被打开,并彼此连接为线型聚丙烯腈(PAN)大分子链,同时释放出17.5kcal/mol的热量,即
生成的聚丙烯腈(PAN)纺丝液经过湿法纺丝或干喷湿纺等纺丝工艺后即可得到PAN原丝。
预氧化和炭化过程生产线示意图如图2所示。
如图2所示,PAN原丝经整经后,送入1#预氧化炉、2#预氧化炉制得预氧化纤维(俗称预氧丝);预氧丝进入低温炭化炉、高温炭化制得碳纤维;碳纤维经表面处理、上浆即得到碳纤维产品。全过程连续进行,任何一道工序出现问题都会影响稳定生产和碳纤维产品的质量。全过程流程长、工序多是多学科、多技术的集成。
均聚PAN的玻璃化温(Tg)为104℃,没有软化点,在317℃分解,共聚PAN的Tg大约在85~100℃范围内,共聚组分不同、共聚量的差异,使Tg随之变化。共聚含量越多,Tg越低。预氧化的温度控制在玻璃化温度和裂解温度之间,即200~300℃之间。预氧化的目的是使热塑性PAN线形大分子链转化为非塑性耐热梯形结构,使其在炭化高温下不熔不燃、保持纤维形态,热力学处于稳定状态。预氧化的梯形结构使炭化效率显著提高,大大降低了生产成本。同时,预氧丝(预氧化纤维OF)也是一种重要的中间产品,经深加工可制成多种产品,直接进入市场,并已在许多领域得到实际应用。
PAN原丝经预氧化处理后转化为耐热梯形结构,再经过低温炭化(300~1000℃)和高温炭化(1000~1800℃)转化为具有乱层石墨结构的碳纤维。在这一结构转化过程中,较小的梯形结构单元进一步进行交联、缩聚,且伴随热解,在向乱层石墨结构转化的同时释放出许多小分子副产物。同时,非碳元素O、N、H逐步被排除,C逐渐富集,最终形成含碳量90%以上的碳纤维。
另外,通过对碳纤维的进一步石墨化还可以获得高模量石墨纤维或高强度高模的MJ系列的高性能碳纤维。即在2000~3000℃高的热处理温度下牵伸石墨化,使碳纤维由无定型、乱层石墨结构向三维石墨结构转化。
对于碳纤维来说,预氧化时间为近百分钟,炭化时间为几分钟,石墨化时间较短,一般只有几秒到数十秒。
1、实现原丝 高纯化、高强化、致密化 以及 表面光洁无暇 是制备高性能碳纤维的首要任务。碳纤维系统工程需从原丝的聚合单体开始,实现一条龙生产。原丝质量既决定了碳纤维的性质,又制约其生产成本。优质PAN原丝是制造高性能碳纤维的首要必备条件,这是多年经验的总结。
2、杂质缺陷最少化,这是提高碳纤维拉伸强度的根本措施,也是科技工作者研究的热门课题。在某种意义上说,提高强度的过程实质上就是减少、减小缺陷的过程。
3、在预氧化过程中,保证均质化的前提下,尽可能缩短预氧化时间。这是降低生产成本的方向性课题。
4、研究高温技术和高温设备以及相关的重要构件。高温炭化温度一般在1300~1800℃,石墨化一般在2500~3000℃。在如此高的温度下操作,既要连续运行、又要提高设备的使用寿命,所以研究新一代高温技术和高温设备就显得格外重要。如在惰性气体保护、无氧状态下进行的微波、等离子和感应加热等技术。
1、预氧化炉碳
目前,大型预氧化炉采用多层运行方式以提高生产效率。按照加热空气的组件在预氧化炉的内部与外部的区别,这些大型预氧化炉可以分为内热循环式和外热循环式两种。外热式可利用废气进行再次热交换,利于节能,如日本东丽公司的千吨级预氧化装置就为该形式;而内热循环由于受热风均匀性限制,一般应用于小型或试验线中。图3为一种外热循环式预氧化炉示意图。
图3所示的预氧化炉均为钢板框架焊接结构,分为三层,热风从顶部进入炉膛,通过上层炉体安装的孔板,形成一定的温度梯度,均匀穿过丝束,使丝束发生预氧化反应,从下层的循环风出口通过过滤和再加热后,从顶部循环进入。为控制进入炉膛内部的热空气量,上部炉体设有解压门(见图示),压力到设定值时,解压门自动打开卸荷。由于PAN原丝易蓄热,容易过热而引起失火,故在上部炉体设有消防喷水管路。由于炉体高大,故内部设有走台。中部炉体部分在操作侧设有移动门,移动门可正向移出,移动门上设有透明观察窗口,便于观察丝束预氧化情况。由于该种形式的辊体在炉膛外部,因此在炉膛与外界之间设有预热室,预热室内部的热风循环系统是单独分开的。
2、炭化设备
炭化炉一般分为低温炭化炉(300~1000℃)和高温炭化炉(1000~1800℃)两种。预氧丝先经过低温炭化炉,然后再进入高温炭化炉,两者形成温度梯度,以适应纤维结构的转化。低温炭化炉如图4、图5所示。
高温炭化炉如图6所示。
将耐热梯型结构的有机预氧丝经过高温热处理转化为含碳量在92%以上的无机碳纤维,实现这一转化的关键设备是碳化炉。工程实践与研究表明:其核心技术是宽口碳化炉及其配套的迷宫密封、废气排除和牵伸系统。对于百吨级碳纤维生产线,炉口宽度需在1 m以上,而且要正压操作,就需非接触式迷宫密封装置;为使热解废气不污染纤维,排除系统要畅通而瞬时排出;牵伸系统则是制造高性能碳纤维重要手段。
3、石墨化炉
目前使用的石墨化炉大多是以石墨管为发热体的卧式炉,图5为一种塔姆式石墨化炉示意图。
另外,还有以高能等离子体为热源的石墨化炉、高频石墨化炉,分别如图6、图7所示。
日本是全球最大的碳纤维生产国,日本的三家企业:日本东丽、日本东邦和日本三菱丽阳目前拥有全球丙烯腈基碳纤维 50%以上的市场份额。目前,世界碳纤维技术主要掌握在日本公司手中, 其生产的碳纤维无论质量还是数量上均处于世界领先地位,日本东丽更是世界上高性能碳纤维研究与生产的 “ 领头羊” 。碳纤维最成熟的技术在日本。
美国是继日本之后掌握碳纤维生产技术的少数几个发达国家之一,同时又是世界上最大的丙烯腈基碳纤维消费国,约占世界总消费量的 1/3。
世界碳纤维的生产主要集中在日本、 美国、 德国等少数发达国家和我国的台湾省。其中, 碳纤维最大生产商日本东丽、 日本东邦、 日本三菱丽阳的产量合计占全球产量的一半以上。
2017 年全球碳纤维产能区域分布
参考资料:
[1] https://wenku.baidu.com/view/837ffa2728ea81c759f578e8.html
[2] https://wenku.baidu.com/view/359ca266b207e87101f69e3143323968011cf4b1.html