三极管电流从哪一极输入,哪一极输出?如何实现放大功能?是放大信号、电流、还是电压?
三极管的工作原理:三极管是电放逐大器件,有三个极,分别叫做集电极C,基极B,发射极E。把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。假如我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输进电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以以为是0。但实际中要放大的信号往往远比0.7V要小,假如不加偏置的话,这么小的信号就不足以引起基极电流的改变(由于小于0.7V时,基极电流都是0)。假如我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,假如没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(由于没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输进的基极电流变小时,集电极电流就可以减小;当输进的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。饱和情况。由于受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无穷增加下往的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进进了饱和状态。一般判定三极管是否饱和的准则是:Ib*β〉Ic。进进饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开封闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开封闭合。假如三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。假如我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。假如基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开封闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。假如基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。除了B极外,C和E极都是可以接负载的,C输出常用于电压放大;E通常用于电流放大。
晶体管的三种放大电路
晶体管的三种放大电路有共射、共集、共基。共射:共射放大电路具有放大电流和电压的作用,输入电阻大小居中,输出电阻较大,频带较窄,适用于一般放大。共集:共集放大电路只有电流放大作用,输入电阻高,输出电阻低,具有电压跟随的特点,常做多级放大电路的输入级和输出级。共基:共基电路只有电压放大作用,输入电阻小,输出电阻和电压放大倍数与共射电路相当,高频特性好,适用于宽频带放大电路。基本的组成原则不管要组成共射,共基还是共集电极放大电路,都要遵循如下原则:要给管子合适的发射结电压以及集电结电压使得管子工作在放大区才有可能组成放大电路;输入信号好一定要能够作用在晶体管的输入回路里边去,负载上能够获得动态信号。共射放大电路的特点:输入电阻大,输出电阻小,只放大电流,不放大电压,在一定的条件下具有电压跟随作用。因此就可以在一个多级放大电路中第一级放置一个射极输出器,这样就使得整个放大电路的输入电阻变得非常大。这样信号源的电压只有一小部分会被信号源内阻消耗,大部分都会流入放大电路中。也可以在多级放大电路的最后一级增加一个射极输出器,这样整个电路输出电阻就非常小,意味着带负载的能力会变强。
三极管电流从哪一极输入,哪一极输出?如何实现放大功能?是放大信号、电流、还是电压?
三极管的工作原理:三极管是电放逐大器件,有三个极,分别叫做集电极C,基极B,发射极E。
把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。假如我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输进电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以以为是0。但实际中要放大的信号往往远比0.7V要小,假如不加偏置的话,这么小的信号就不足以引起基极电流的改变(由于小于0.7V时,基极电流都是0)。假如我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,假如没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(由于没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输进的基极电流变小时,集电极电流就可以减小;当输进的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。
饱和情况。由于受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无穷增加下往的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进进了饱和状态。一般判定三极管是否饱和的准则是:Ib*β〉Ic。进进饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开封闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开封闭合。假如三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。
假如我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。假如基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开封闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。假如基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。
除了B极外,C和E极都是可以接负载的,C输出常用于电压放大;E通常用于电流放大。
三极管放大原理
三极管放大原理如下:因为基极空穴较少,所以发射极电子被集电极电场吸引进入集电极过程与基极空穴复合概率较小,当基极电流增大(空穴增多)时,因为电子与基极空穴复合概率较小。所以,基极电流稍微增大一点,就需要很多的电子才能与基极增多一点的空穴复合,因此,基极电流变化一点,而引起发射极电流发生较大的变动,从而实现了放大作用。三极管工作原理:以NPN三极管为例:正常工作在放大状态时,因为基极电压高于发射极,电路正偏,有大量电子流入发射极,形成Ie,电子原本要通过基极回到电源正极,但是发射机电子进入基极后,由于集电极电压比基极还要高。于是电子被集电极强烈的电场吸引,从而电子不走基极回到电源正极,而进入集电极到达电源正极形成集电极电流Ic,但是,基极中还是有空穴的,发射极电子被集电极电场吸引进入集电极过程中,一小部分电子与基极空穴复合形成基极电流Ib。这就是三级管电流走向。三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
三极管放大原理
三极管放大原理:基级电流较小的变化量控制集电极电流的变化量,调节使三极管工作在最佳放大区,输入有交流信号时,交流电流的变化控制三极管的发射结电流,从而控制三极管集电极的电流大小,三极管集电极电流增大使集电极电压降低,电流减小使电压升高,所以在负载就能得到放大的交流信号。基极三个电阻是偏置电路,其中可调电阻用于调整偏置电流,使三极管工作在最佳状态。集电极电阻是负载电阻,射极电阻是负反馈电阻,射极电容是旁路电容。基极电容是输入耦合电容,集电极电容是输出耦合电容。输入信号电压经输入电容加到基极形成输入电流,被三极管放大后的信号电流在负载电阻上产生压降,经输出电容输出加到后级负载。